

| Dog No .  |  |  |
|-----------|--|--|
| Reg. No.: |  |  |
| _         |  |  |

## Question Paper Code: 90348

## B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2019 Fifth Semester

Information Technology

MA 8551 – ALGEBRA AND NUMBER THEORY

(Common to Computer Science and Engineering/Computer and Communication Engineering)

(Regulations 2017)

Time: Three Hours

Maximum: 100 Marks

## Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$ 

- 1. Define a subgroup and give one proper subgroup of  $(Z_6, +)$ .
- 2. Give an example for a cyclic group along with its generator.
- 3. Find all the roots of  $f(x) = x^2 + 4x$  in  $Z_{12}[x]$ .
- 4. Give an example for an irreducible and reducible polynomial in  $\mathbb{Z}_2[x]$ .
- 5. Find the number of positive integer's  $\leq 3076$  and not divisible by 17.
- 6. Using the canonical decomposition of 1050 and 2574, find their lcm.
- 7. Determine whether the LDE 2x + 3y + 4z = 5 is solvable.
- 8. What is the remainder when 331 is divided by 7?
- 9. State Fermat's little theorem.
- 10. If  $n = 2^k$ , then show that the value of Euler's phi function  $\phi(n) = n/2$ .

## PART - B

(5×16=80 Marks)

- 11. a) i) Let G be the set of all rigid motions of a equilateral triangle. Identify the elements of G. Show that it is a non-abelian group of order 6.
  - ii) Let G be a group with subgroups H and K. If |G| = 660, |K| = 66 and  $K \subset H \subset G$ , what are the possible values for |H|? (8+8)
  - b) i) Prove that  $(Q, \oplus, \circ)$  is a ring on the set of rational numbers under the binary operations  $x \oplus y = x + y + 7$ ,  $x \circ y = x + y + (xy/7)$  for  $x, y \in Q$ .
    - ii) Find  $[100]^{-1}$  in  $Z_{1009}$ .

(8+8)



- 12. a) i) If  $f(x) \in F[x]$  has degree  $n \ge 1$ , then prove that f(x) has at most n roots in F.
  - ii) Find the gcd of  $x^{10} x^7 x^5 + x^3 + x^2 1$  and  $x^8 x^5 x^3 + 1$  in Q[x]. (8+8)

(OR)

- b) Prove that a finite field F has order  $p^t$ , where p is a prime and  $t \in Z^+$ . (16)
- 13. a) i) Prove that there are infinitely many primes.
  - ii) Prove that the gcd of the positive integers a and b is a linear combination of a and b.

    (8+8)

(OR)

- b) i) Apply Euclidean algorithm to express the gcd of 1976 and 1776 as a linear combination of themselves.
  - ii) Prove that the product of gcd and lcm of any two positive integers a and b is equal to their products. (8+8)
- 14. a) i) Find the general solution of the LDE 15x + 21y = 39.
  - ii) Solve the linear system.

(8+8)

 $5x + 6y \equiv 10 \pmod{13}$ 

 $6x - 7y \equiv 2 \pmod{13}$ 

(OR)

- b) State and prove Chinese Remainder Theorem. Using it find the least positive integer that leaves the remainder 1 when divided by 3, 2 when divided by 4 and 3 when divided by 5. (16)
- 15. a) i) State and prove Wilson's theorem.
  - ii) Using Euler's theorem find the remainder when 245<sup>1040</sup> is divided by 18. (8+8)
  - b) Let n be a positive integer with canonical decomposition  $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ . Derive the formulae for Tau and Sigma functions. Hence evaluate  $\tau(n)$  and  $\sigma(n)$  for n = 1980.